
 
 

 
 

5th World Congress for Software Quality – Shanghai,  China – November 2011 

Useful Metrics for Managing Testing 

Tim Brister  
Jaaloh Ltd, 47 Colney Lane, 
Norwich NR4 7RG, England 

Timjbrister@aol.com 

Karol Frühauf  
INFOGEM AG, Postfach,  
5401 Baden, Switzerland 

Karol.Fruehauf@infogem.ch 
 

Dr. Ferdinand Gramsamer  
bbv Software Services AG,  
6002 Luzern, Switzerland 

Ferdinand.Gramsamer@bbv.ch

Abstract 

The paper presents a couple of test execution and defect report metrics that were useful in managing a 
software project with ca. 40 testers. The metrics were used to recognise the need for actions and for 
deciding when to launch the software. It is nothing spectacular we report on except the fact that the 
figures were continuously evaluated and turned out to be useful and instructive. Therefore we focus this 
experience report on lessons learned. We omit any hint on the application area because we’re convinced 
that it is not a factor for the usefulness of the presented metrics. 

1.   Introduction 

The major challenge in test management, besides the human factors, is tracking the test execution 
progress and to forecast when the product will be ready for launch. We report here on a few simple 
metrics that were useful for these purposes in a project with a four level testing strategy: component test, 
integration test, system test, and business and user acceptance test. 

For test management three classes of metrics are of interest: 

� Test case design and specification related metrics 
� Test case execution related metrics 
� Defect related metrics 

In our project the majority of the test specifications (TSPC) were inherited from the past. New test 
specifications on the lower testing levels were partly derived from already existing ones. Therefore the 
first class of metrics was of less relevance; the progress of the test design activities was tracked by the 
status of the new / updated test specifications. 

We focus here on the metrics around test execution and defect removal and report mainly about their 
interpretation. 

No cost data will be reported. We will not provide a description of the data acquisition process. We would 
like to stress that the effort dedicated exclusively to the metrics work was negligible compared with the 
overall test management cost alone. 

The metrics selection and its usefulness are independent of the application area, which is why we abstain 
from presenting the application.  

2.   Goals and Basic Metrics 

2.1  Goals for the Evaluations 

The underlying planning assumption was that test execution is prioritised based on risks, therefore 
wherever possible the area of highest risk is scheduled to be tested earliest and most often. 

Project management wanted to know 

� which functional and non-functional aspects have been tested, at which test level and how 
many times? 
� Which functional and non-functional aspects have not been tested yet? 
� What is the schedule for 

� regression test of already tested aspects? 
� test of the yet untested aspects? 

� How many critical defects 



 
 
 
 

5th World Congress for Software Quality – Shanghai,  China – November 2011  

 
Useful Metrics for Managing Testing  Page 2 of 11 
 
 

� were found in the reporting period? 
� were closed in the reporting period? 
� are still open at the end of the reporting period? 

� When can we launch?  

Additionally, test management needed to quickly pinpoint issues or incidents. The concept of test 
specifications and test areas meant that the functional and non-functional aspects could be consolidated 
for the purpose of maintaining an overview whilst also enabling test management to refine information 
and report on the aspects relevant to the particular issue or incident.  

2.2  Basis of the Evaluations 

In the beginning of the project, we have defined test execution metrics that would serve two means:  

1. Respect the needs of testers 
2. Provide meaningful results to project management 

The ultimate requirement of the testers is: No additional effort for metrics data. This has been achieved 
quite easily; the established test execution process at system test level already captured the data needed 
for management purposes and was therefore sufficient for the evaluations we introduced for 
management. For the other test levels a similar process was put in place. 

At each test level (component test, integration test, and system test) the test scope has been broken 
down into several test specifications. The topic of a test specification is the functional or non-functional 
behaviour of a certain feature or functionality provided by a particular interface of an entity. 

Each test specification is organized in test areas, which are compounds of test cases that logically belong 
together. For instance, for a router, the routing would be a test area, the administration GUI another one, 
etc. As shown in Table 3 there are at system test level 23 test specifications, adding up to 125 test areas 
and totalling in 1642 test cases.  

A test case is a series of test steps. Testers record their progress and the results of manual test execution 
with the granularity of test steps. The test steps specify the checks for test automation. 
Progress on test step level was monitored by the tester and the leader of his / her test team. Project and 
test management monitored the state and results of test cases, test areas and test specifications.  

Test management reported test progress on a per test case basis cumulated across all test areas per test 
level. Figure 2 shows the progress per release for component A, Figure 1 the progress for a system test 
cycle. We were able to provide periodically an overview which functional and non-functional aspects have 
been tested, how many times this happened and what were the results (see also Table 1 and Table 3). 

In the evaluations we distinguished between the state of a test case / test area and the result of the 
execution. Depending on test execution progress a test case can have different states. 

State Description 
not yet executed as long as no test step was yet executed  

(0% test steps executed) 
not completed test case execution started but not all test steps are 

executed yet (0% < test steps executed < 100%) 
completed 100% test steps executed 
not planned none of the test steps is planned to be executed 

Additionally, a compound test case state “not run” was introduced to indicate that all of its test steps are 
either “not planned” or “not yet executed”.  

The same states are defined for a test area. A test area is “not planned” when none of its test cases are 
planned to be executed and is “completed” if all of its test cases have been executed.  

The evaluation of the test areas executed can deliver the following results: 

� “passed” all test cases passed 
� “failed” at least one test case failed. 



 
 
 
 

5th World Congress for Software Quality – Shanghai,  China – November 2011  

 
Useful Metrics for Managing Testing  Page 3 of 11 
 
 

� “failing” not completed yet but at least one executed test case “failed” 
� “not all run” not completed yet but all executed test cases “passed” 

Other useful states were “out of scope” and “error”. “Out of scope” is a test area that is no longer relevant 
to the project but was not removed from the test specification yet. A test area will end in a state “error”, if 
the evaluation of the result fails. The latter two states were in particular useful to more easily manage the 
test specification changes that had an impact on the metric data acquisition process, and hence we will 
not further discuss them.  

The defect removal workflow was already defined and supported by a tool. Only the recording of the test 
level, at which a defect is detected, had to be amended and the evaluations for project and test 
management had to be prepared. 

The following attributes of defect reports were evaluated: 

� Test level at which the defect was detected 
� Component affected by the defect 
� Severity of the defect 
� Date the defect report was submitted 
� Date the defect report was closed 

A defect tracking tool was used and its output processed by a spreadsheet tool. 

Early in the project it was decided that only critical defects, i.e. those that prevent useful operation of the 
system, would be repaired. Therefore monitoring and reporting of defects was focussed on these.  

Data acquisition and preparation was done on a weekly basis and did cost about 1h per integration and 
system test level and one hour per component. The consolidation by overall test management took 4h. All 
in all the measurement effort was around 12h per week, i.e. less than 1% of the available testing effort. 

3.   Test Case Execution Metrics 

3.1  Test Progress – Specified, Planned, and Execut ed Number of Test Cases 

For each release, the number of test cases specified and planned for execution was evaluated per 
component and test level. This was done to set clear goals for testing, so we could measure success and 
hence make a statement about readiness for launch. The time-period for testing a release was four 
weeks.  

We made test execution progress visible on a weekly basis as shown in Figure 1 for functional system 
test of release V1.10. To prevent overload of this graph, the results “passed”, “failed” are displayed 
together with the states “not completed” and “not run” as a stacked bar, and the “planned” number of test 
cases as a line. The benefit is that we always see the total number of specified test cases (the entire bar), 
the number of test cases “not planned”, which is the difference between the top of the bar and the line, 
and the number of test cases “not yet executed”, which is the number of test cases "not run" below the 
“planned” line.  

As can be seen in Figure 1 most test cases were executed during the first week. The number of additional 
test cases executed per week goes down from 36% in first week, to 18% in last week in this particular 
release. We observed the same pattern for all other releases on all test-levels. At system level a 
significant portion of test cases is executed manually, which allows for the state “not completed”. It 
signifies that a tester found issues while executing a test that need to be resolved until end of the cycle. 
The number of “not completed” is to this end an expression of the maturity of the software. The less the 
number of “not completed” test cases the higher the software maturity. The ultimate goal is to have zero 
test cases in state “not completed”, which we achieved in the final release. The planned number of test 
cases decreases slightly; it is modified based on insights derived from the executed tests.  

 

 

 



 
 
 
 

5th World Congress for Software Quality – Shanghai,  China – November 2011  

 
Useful Metrics for Managing Testing  Page 4 of 11 
 
 

 
Figure 1.  Weekly test-execution progress of release V1.10 of system tests  

Whereas Figure 1 shows intra-release progress, Figure 2 demonstrates inter-release progress. It 
compares the number of executed test cases for each result category with the planned ones over the 
releases, here for component A. 

 
 

Figure 2. Success of test-execution per release of component A across releases  

The first test cycle (V1.0) showed a significant amount of test cases that were “not yet executed”, 
indicated by the number of “not run” below the “planned” test cases. This let us conclude that the 
component software was not yet ready for integration and system test. This information helped us to 
postpone start of system test to V1.2. There was no component test for V1.1 because component A 
deliverable did not pass acceptance testing; the component test cases were used to help development. 
The functionality of the component A did grow with the releases and so did the number of specified and 
planned test cases. It was at V1.11 stage that all functionality was implemented. As component A was 
considered high risk, almost all test cases were regressed for all releases.  

3.2  Test Coverage – Test Execution and Results His tory  

By keeping a history of the test results of a release per test level and test area, we were able to answer 
the following questions: 

a) Are all test areas covered? 
b) Is the test execution coverage of all test specifications 100%? 
c) How often has a test area been executed? 

1762 1739
1736 1716

0

500

1000

1500

2000

2500

19.09.2008 (V1.10) 26.09.2008 (V1.10) 03.10.2008 (V1.10) 10.10.2008 (V1.10)

N
um

be
r o

f t
es

t c
as

es

Time

passed failed not completed not run planned

361
28
25

1'663

664
161
15

1237

963
66
18

1034

1'439
15
12

602

Oct'07
(V1.0)

Feb'08
(V1.2)

Mar'08
(V1.3)

Apr'08
(V1.4)

May'08
(V1.5)

Jun'08
(V1.6)

Jul'08
(V1.7)

Aug'08
(V1.8)

Sep'08
(V1.9)

Oct'08
(V1.10)

Nov'08
(V1.11)

Dec'08
(V1.12)

Jan'09
(V1.13)

not run 1455 143 576 584 985 435 1157 262 410 152 546 685 140

not completed 0 0 0 0 0 0 0 0 0 0 0 0 0

failed 28 204 128 184 375 397 177 151 0 44 3 0 0

passed 1177 2351 2300 2634 3598 4952 4502 5816 5822 6175 5986 5925 6655

planned 2660 2351 2669 2994 3665 5009 4879 5930 5974 6221 6343 5925 6655

0

2000

4000

6000

8000

N
um

be
r 

of
 te

st
 c

as
es

Time

passed failed not completed not run planned



 
 
 
 

5th World Congress for Software Quality – Shanghai,  China – November 2011  

 
Useful Metrics for Managing Testing  Page 5 of 11 
 
 

d) What was the last time, a test area has successfully been executed? 

The information that we kept were the states of a test area as described in Section 2.2. Furthermore, we 
tracked the number of specified test cases, how many were executed and how many “passed”. This 
information was sufficient to derive a full picture and answer the above questions.  

As an example in Table 1, you see test specification A01, with the test areas A, B, C, and D. Test areas 
A, B, and C passed, because the number of specified test cases were all executed and passed. Test area 
D is “not all run”, because all executed test cases passed, but not all were run. Similarly, for test 
specification A02, test area A is failing, because not all executed test cases passed, but not all are 
completed already, and test area C failed, because all specified test cases were executed, but 4 test 
cases failed. With this table we are able to answer the questions a) and b). 

When putting this kind of information in a sequence per release from left to right, one can easily derive 
how many times a test area has been executed, when it was last successfully executed and whether or 
not all test areas or test specifications were covered. This is shown in Table 2 for the releases V1.8 to 
V1.12 for test specification B23. The states are abbreviated In this table: “p” stands for “passed”, “nr” 
signifies “not run”, “pl” means “planned” and “np” “not planned”. The last two columns summarize all 
releases to show, whether a test area has so far not  been covered, indicated by a 1 in the second last 
column, or how many times it has been executed – shown in the last column.  

In the end, we were able to pull all the information about test coverage together in one table to answer 
questions a) – d), see Table 3 for system test level. There are three blocks of information. The left one 
gives an overview about the available test specifications and test areas. The block in the middle shows 
the results of the current release, whereas the block on the right summarizes the history.  

Specifically, Table 3 summarizes release V1.13, which is the release that went into production. We can 
see that test specifications A03 and A04 were not planned for execution. Hence the percentage of test 
execution is 0%. However, the test specification has been fully covered and executed once before. A03 
and A04 were low priority test specifications. The focus goes quickly to those test specifications of 
interest: B23, and C02. B23 contains a test area covering a feature that was always promised, but after 
all has never been delivered. C02 is also a low priority test specification. It contains a test area that was, 
because of its destructive nature, difficult to execute and would have blocked the test environment for at 
least one day. Based on this information project management therefore decided not to execute these 
tests and take the risk. 

Table 1.  Test area result overvierw  

Doc 
Id Test Area Test Cases 

Name Name State Specified  Executed  Passed 

A01 

Test Area A01.A Passed  10  10  10 
Test Area A01.B Passed  21  21  21 
Test Area A01.C Passed  6  6  6 
Test Area A01.D not all run  15  10  10 

A02 

Test Area A02.A Failing  703  634  632 
Test Area A02.B not planned  0  0  0 
Test Area A02.C Failed  34  34  30 
Test Area A02.D not planned  1  0  0 
Test Area A02.E Passed  115  115  115 
Test Area A02.F Passed  120  120  120 
Test Area A02.G Failing  132  127  125 



 
 
 
 

5th World Congress for Software Quality – Shanghai,  China – November 2011  

 
Useful Metrics for Managing Testing  Page 6 of 11 
 
 

Table 2.  Test area results across consecutive releases  

Name Status  since 1.8 

TSPC Test Area V1.8 V1.9 V1.10 V1.11 V1.12  

T
es

t A
re

as
 

N
ot

 F
ul

ly
 

C
ov

er
ed

 
N

r 
T

im
es

 
E

xe
cu

te
d 

B23 Test Area 
B23.A 

p pl p pl  p   0 3 

B23 
Test Area 
B23.B 

p pl p nr p  0 4 

B23 
Test Area 
B23.C 

p pl p nr p  0 4 

B23 
Test Area 
B23.D 

p np p pl p  0 3 

B23 … … … … … …  … … 

B23 
Test Area 
B23.U nr pl p pl p  0 3 

B23 Test Area 
B23.W 

p pl nr nr p  0 4 

B23 
Test Area 
B23.X 

np pl np np np  1 0 

B23 
Test Area 
B23.Y 

p pl nr nr p  0 4 

B23 
Test Area 
B23.Z p pl  p  pl p  0 3 

The advantage of that table is that it is easy to recognise what has been done and what not, thus is a 
good basis to decide with project management the measures and appropriate action. Only the exceptions 
will be discussed. 

Table 3.  Test area coverage and frequency of execution  

Specified  Release V1.13  Since V1.8 

T
S

P
C

 

P
rio

rit
y 

N
um

be
r 

of
  

T
es

t A
re

as
 

 P
as

se
d 

F
ai

le
d 

N
ot

 
C

om
pl

et
ed

 

N
ot

 r
un

 

P
er

ce
nt

 
E

xe
cu

te
d 

 T
es

t A
re

as
 

N
ot

 F
ul

ly
 

C
ov

er
ed

 

N
r 

T
im

es
 

E
xe

cu
te

d 

A01 2 8  126 0 0 0 100.00%  0 4 
A02 2 1  8 0 0 0 100.00%  0 4 
A03 3 1  0 0 0 0 0.00%  0 1 
A04 3 2  0 0 0 0 0.00%  0 1 
B01 2 4  62 0 0 0 100.00%  0 4 
B11 1 14  934 0 0 0 100.00%  0 2 
B21 2 5  27 0 0 0 100.00%  0 3 
B22 1 3  3 0 0 0 100.00%  0 4 
B23 1 26  133 0 0 0 100.00%  1 3 
… … …  … … … … …  … … 
C01 1 2  1 0 0 0 100.00%  0 3 
C02 3 8  0 0 0 0 0.00%  1 1 
C03 2 2  4 0 0 0 100.00%  0 3 

23   125  1642 0 0 0   2  



 
 
 
 

5th World Congress for Software Quality – Shanghai,  China – November 2011  

 
Useful Metrics for Managing Testing  Page 7 of 11 
 
 

4.   Defect Metrics 

The following metrics will be discussed: 
 

� Cumulated number of submitted, closed and open critical defect reports  
� Cumulated number of submitted defect reports per component 
� Monthly rate of submitted defect reports per test level 
� Survival period of critical defect reports  

4.1  Submitted, Closed, and yet Open Defect Reports  

The shape of the number of reported critical defects in Figure 3 is no surprise, it is as everybody would 
expect. The number of closed defect reports is tricky to understand. Remember, we have three test 
levels. We considered the defects that already passed at least one test level as potentially ready for 
launch. Therefore these were added to the number of closed defect reports. The number of open defect 
reports counts all those that are not closed. Therefore, the number of open defect reports is not the 
difference between the number of submitted defect reports and the closed ones. 

 
Figure 3. Cumulated number of critical defect repor ts  

To find out whether the development team needs to be inspired or the test team is the bottleneck, a list of 
critical defect reports "in work" and "in test" was produced. Project management encouraged the 
development team and test management the test team to accomplish the work in time. 

The original internal plan was to launch the product End of June 2008 (full rhomb in Figure 3). The launch 
date announcement was scheduled for April 2008 (empty rhomb in Figure 3). At that time a new 
announcement date was published for August 2008 and a tentative launch date for the first quarter 2009. 
In August 2008 the launch date in February 2009 was promised with a confirmation due in November 
2008. The launch date in February 2009 was confirmed in November.  

The number of submitted critical defect reports curve in May could have been interpreted as entering the 
saturation phase. Fortunately, the forecast had to be done in April where this was evidently not the case. 
In April there was a peak with a record for the number of submitted reports in a month (see Figure 5 that 
shows this peak more clearly). In August the number of open critical defect reports supported the 
announcement, closing of defect reports outperformed their submission. In November the projection of 
both curves (not shown in Figure 3) indicated that the launch date in February 2009 is feasible. 

It is worth mentioning that the last functional extension arrived in November. This explains the nearly 
constant defect rate in previous periods. As soon as only defect removals were delivered, the system 
started to stabilise. This was considered in the projections we’ve made for the launch date forecast and 

112
169

221

297

383
408

458

327

241

155

44 27 13 4
0

200

400

600

800

1000

1200

Dez 07 Jan 08 Feb 08 Mrz 08 Apr 08 Mai 08 Jun 08 Jul 08 Aug 08 Sep 08 Okt 08 Nov 08 Dez 08 Jan 09 Feb 09

Calendar Months

N
um

be
r 

of
 C

rit
ic

al
 D

ef
ec

t R
ep

or
ts

Total Cumulated Closed or Passed on at Least One Test Level Open



 
 
 
 

5th World Congress for Software Quality – Shanghai,  China – November 2011  

 
Useful Metrics for Managing Testing  Page 8 of 11 
 
 

indeed, the number of induced defects was low. In the last 6 months it was as low as 3%. Till September 
2008 yet around 12% of removed defect tests failed.  

Did all components behave similarly? According to Figure 4 the components A and B were in November 
2008 still at risk while C was doing well. 

 
Figure 4.  Cumulated number of submitted defect reports per co mponent 

The figure contains only the data for the critical three components that were in focus of monitoring. All 
three components had at least one release that was a major instability step. These were caused by major 
functional enhancements in components A (August and October) and C (August). Component B 
experienced in October a significant redesign within its core functionality. Component C became quicker 
mature because the overall functionality was implemented quite early. No surprise, it is the smallest 
component. 

4.2  Defects Detected per Test Level 

The defects were assigned to the test level in which they were detected. As expected, most of the defects 
were found at component level that started far ahead of integration and system test as can be seen in 
Figure 5. The explanation for the integration test’s low defect detection rate is that only few interfaces 
were tested formally and that the test case design was done partly with end-to-end test in mind and not 
focused on the interfaces between the components. 

4.3  Defect Report Survival Period 

The defect reports issued early in the project took a long time until they were fixed and got closed (see 
Figure 6). The survival time of the defect reports did not drop below 50 days until September (6 months 
before launch). With the more or less regular monthly release cycle a survival time of 45 days would be a 
good practice. As expected the survival period dropped below the monthly cycle period at the end where 
defect fixes were delivered in patches.  

0

100

200

300

400

500

600

700

800

900

 Apr 08  May 08  Jun 08  July 08  Aug 08  Sep 08  Oct 08  Nov 08  Dec 08  Jan 09

Calendar Months

N
um

be
r 

of
 S

ub
m

itt
ed

 D
ef

ec
t R

ep
or

ts

Component A Component B Component C
Log. (Component A) Log. (Component B) Log. (Component C)



 
 
 
 

5th World Congress for Software Quality – Shanghai,  China – November 2011  

 
Useful Metrics for Managing Testing  Page 9 of 11 
 
 

 
Figure 5.  Monthly rate of submitted defect reports per test level 

 
Figure 6.  Survival period of critical defect reports  

5.   Conclusions 

Looking at test execution progress, we see that most tests are executed within the beginning of testing a 
new release (see Figure 7). This met our expectations. Whether test execution goals can be reached or 
not can be therefore estimated early. If a testing period is subdivided into four weeks, as in our case, in 
the first week about a third of the test cases have to be executed, otherwise it is unlikely to reach the 
planned coverage. Reasons for not being able to execute about a third of the test cases within the first 
period could be that the application is still immature, the time-consuming test cases are executed first, or 
the capacity of testers is wrongly estimated. 
 

0

50

100

150

200

250

May
07

Jun
07

Jul
07

Aug
07

Sep
07

Oct
07

Nov
07

Dec
07

Jan
08

Feb
08

Mar
08

Apr
08

May
08

Jun
08

Jul
08

Aug
08

Sep
08

Oct
08

Nov
08

Dec
08

Jan
09

Calendar Months

N
um

be
r 

of
 S

ub
m

itt
ed

 D
ef

ec
t R

ep
or

ts

 Component Test  Integration Test  System Test

Critical Defect Reports Survival Period

0

50

100

150

200

250

300

350

400

450

500

28.04.2007 06.08.2007 14.11.2007 22.02.2008 01.06.2008 09.09.2008 18.12.2008 28.03.2009

Critical Defect Reports Submission Date

N
um

be
r 

of
 C

al
en

da
r 

D
ay

s 
O

pe
n



 
 
 
 

5th World Congress for Software Quality – Shanghai,  China – November 2011  

 
Useful Metrics for Managing Testing  Page 10 of 11 
 
 

 

Figure  7. Weekly test-execution progress – improved presentation 

The test case state “not completed” turned out to be misleading for management. The original idea was to 
allow the tester to express that he has started execute a test case but was not able to complete it due to 
some issues. These can turn out to be as a misunderstanding of the tester, a wrong test case 
specification, a change in the software specification not yet included in the test specification, or simply an 
indication of a defect whose circumstances need to be analysed more deeply. This state of uncertainty is 
difficult to convey to non-testers. We therefore suggest to replace it by a more comprehensive state, such 
as “issues to be resolved”. 
Also a combined state, such as our described state “not run” is difficult to understand. It lead to many 
discussions in the project. Therefore, we would henceforth display Figure 1 (and likewise  
Figure 2 ) as shown in Figure 7. The “not run” state has been replaced by the unambiguous 
“not yet executed” and the number of specified (available) test cases is explicitly stated and does not 
have to be calculated by the viewer. 
Overall, test coverage metrics were found to be very useful to evaluate the launch date at little cost to test 
management. While in early evaluation stages, the sheer number of unsuccessfully executed test cases 
and found defects was sufficient information, the test coverage information became more and more 
important during the course of the project. Our approach allowed to provide an overview, to qualify the 
findings, if necessary, and to focus on the exceptions by facilitating deliberate decisions by project 
management. 
For the defect metrics, the major conclusion is: You can believe what is written in the books. In a real 
project the real data behaved as taught in the books, e.g. the ones listed in [1], [2]. The observation that 
follows is not mentioned in these books. 

1762 1739 1736 1716

0

250

500

750

1000

1250

1500

1750

2000

2250

ex
ec

ut
ed

av
ai

la
bl

e

ex
ec

ut
ed

av
ai

la
bl

e

ex
ec

ut
ed

av
ai

la
bl

e

ex
ec

ut
ed

av
ai

la
bl

e

19.09.2008
(V1.10)

26.09.2008
(V1.10)

03.10.2008
(V1.10)

10.10.2008
(V1.10)

N
um

be
r 

of
 te

st
 c

as
es

passed failed issues to be resolved not yet executed specified planned



 
 
 
 

5th World Congress for Software Quality – Shanghai,  China – November 2011  

 
Useful Metrics for Managing Testing  Page 11 of 11 
 
 

We used a five-value scale from critical, over 
major, medium, minor down to low. The 
strategic decision to process only critical ones 
before launch forced the defect board to 
investigate thoroughly whether a defect is 
critical. 
As critical were classified defects that would 
prohibit production start, i.e. prevent the 
system to fulfil its purpose. Another reason 
would be the rare case where it does not 
prevent production but has a detrimental effect 
on testing, i.e. prevents testing or makes it 
disproportionally tedious. It could be worth to 
have a means to distinguish between 
production critical and test critical. 

 
Figure 8.  Severity of submitted defect reports 

The fact that 2/5 of the defects were classified as critical and other 2/5 as major but only 1/5 of the 
defects ended up in the three less severe categories (others in Figure 8) indicates that a three-value 
scale would be sufficient. The subtlety of the five classes had no value for controlling the project and 
aggravates defect recording. 

References 

[1] Kan, S.H.: Metrics and Models in Software Quality Engineering. Addison Wesley, Reading, (1995) 
[2] Amman, P., Offutt J.: Introduction to Software Testing. Cambridge University Press, Cambridge 
(2008) 

 Major ..; 
853

 Others ; 
476

 Critical 
821


